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Abstract

The problem under consideration is a numerical study of the effects of thickness on lift for
low-aspect-ratio wings in steady incompressible inviscid flow at moderate angles of attack. At
these angles of attack the flow separates along the leading edge giving rise to a lift substantially
higher than that computed by classical attached-flow potential theory. The problem is treated
as a perturbation expansion in a small thickness parameter. The lifting elements of the flow are
modeled using a nonlinear vortex-lattice method which replaces the leading and trailing-edge
vortex sheets by segmented straight vortex filaments. The thickness elements of the flow are
modeled with a mean-plane source distribution and a modification to the wing boundary
conditions. Results are obtained for wings with biconvex and NACA 0012 sections which
compare well with available experimental data. The important observation that the effect of
thickness is to decrease the lift is made.

1. Introduction

At moderate to high angles of attack flow separates along the leading edge of a low-aspect-ratio
delta wing resulting in a free shear layer. This free shear layer rolls up in a spiral fashion, just
inboard of the leading edges, to form leading-edge vortex flow. The general nature of this
separated flow is well understood having been the subject of several enlightening experimental
investigations [1-6]. However, accurate theoretical prediction of the nonlinear effects is still
being investigated as evidenced by numerous current journal articles and excellent reviews by
Smith [7], Lamar and Campbell [8] and Hoeijmakers [9]. Among several methods [10-17] to
compute vortex flows on three-dimensional wings the nonlinear vortex-lattice methods [14,16]
are relatively simple and yield fairly decent aerodynamic coefficients. In these methods discrete
line-vortex segments trail from the leading and the trailing edges. These vortices form the
discrete representation of the roll-up of the leading-edge vortex sheet and the trailing wake
sheet. The boundary conditions on the sheet surfaces are satisfied by aligning the segments
parallel to the local flow direction, while simultaneously their strengths are determined by
satisfying the wing boundary condition.

Very few investigations have been made to study the aerodynamic characteristics of delta
wings with round leading edges. It is important to study this aspect in some more detail since
one of the main effects of thickness on low-aspect-ratio delta wings is to decrease the
aerodynamic lift.

Kulfan [18] has developed a concept for treating a round leading edge, where only a partial
recovery of the suction force is achieved. The method can be used to predict the spanwise
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development of the leading-edge vortices on highly swept wings with round-nose airfoils. Lan
[12], using the quasi-vortex lattice method with suction analogy, * estimated the aerodynamic
characteristics of round-leading-edge wings incorporating the effect of vortex breakdown.
Lamar [8,19], using the vortex-lattice method with suction analogy, computed the aerodynamic
coefficients of a round-leading-edge wing. But, using the suction analogy, one cannot predict
the pressure and the velocity distributions. The higher-order panel method developed at Boeing
by Johnson et al. [13] is the most sophisticated panel method for computing subsonic
subcritical flow about configurations with free vortex sheets. Recently the method has been
made to handle the cases of wing thickness, camber and twist [20]. But when the method was
applied to the case of a flat wing with thickness, it produced larger pressure peaks than the
experimental data. Gordon and Rom [17] have used the vortex-lattice method to calculate the
aerodynamic characteristics of a series of delta wings with or without camber. They have
developed a method based on the vortex-lattice method and panel source singularities to
calculate the aerodynamic coefficients of thick wings with sharp leading edges.

Plotkin [21] has developed corrections to aerodynamic coefficients obtained from slender-
wing theory for wings of vanishing aspect ratio with spanwise thickness and camber. Weber [22]
has developed a second-order perturbation theory for wings of finite thickness and camber in
incompressible attached flow. The flow field is represented by a distribution of sources and
lifting singularities on the mean chord surface. Following her method, Sells [23] computed the
steady, inviscid flow around thick wings at incidence.

The thickness effect is the focal point of the present paper. A method to study the effects of
thickness on lift for triangular wings, which also gives the details of the flow, is studied here. In
this method, sources and vortices are distributed on the mean surface of the thick wing and the
nonlinear discrete-vortex technique is used to deal with the separated flow from the leading
edges and the nonlinear wake from the trailing edge.

3. General formulation for wings with thickness at moderate angle of attack

Consider the steady incompressible flow of a uniform stream with speed U and at an angle of
attack a past a delta wing with thickness. The flow over the wing is assumed to separate from
the leading edge giving rise to leading-edge vortex flow and also there is a vortex sheet
emanating from the trailing edge. The flow is assumed to be inviscid and irrotational outside
the wing and the vortex sheets.

The leading-edge vortex is taken to be full span and the breakdown of the vortex systems at
large angles of attack is not considered. A cartesian coordinate system is placed at the apex of
the wing with the wing mean plane lying in the xy-plane. The xz-plane is a plane of symmetry.
The thickness is assumed to be small compared to the wing-root chord C.

The flow outside the wing and its free vortex sheets is governed by Laplace's equation,

V 2 =O , (1)

where is the total velocity potential given by

= Ux cos a + Uz sin a + (2)

and ' is the disturbance velocity potential.

* The so-called suction analogy is based on the assumption that for flow separation along the leading edge, the suction
force is recovered as a force rotated through 900 to act in the direction of the normal force.
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For moderate a and small , the disturbance potential 0 can be written as *

P = 0 + T + O(T2). (3)

Let the wing boundary surface be defined by

0 = F(x, y, z) = z - H(x, y). (4)

We are seeking the solution of Laplace's equation (1) subject to the following conditions
(a)-(d):

(a) The velocity is tangent to the wing surface. Therefore,

Vt- F=O on F=0 (5)

where

V( = (U cos a + Ax, y, U sin a + ). (6)

(b) There is no pressure jump across the wakes emanating from the leading edges and the
trailing edges of the wing.

(c) The Kutta condition which requires finite velocity at the wing edges should be satisfied.
(d) The disturbance velocity, V4, must vanish far from the wing and the wake surfaces.
The modeling of the perturbation flow field with a system of discrete vortex segments

guarantees satisfaction of the conditions of incompressibility and irrotationality (equation (1))
and also ensures that the uniform stream is recovered far from the wing and the wakes. The
strengths of the vortex segments are determined such that the rest of the conditions are
satisfied.

Since we are considering symmetric wings and if TZ,(x, y) is the thickness function
(thickness is 2TZ,(x, y)), we have

H(x, y)= ±Z,(x, y). (7)

Combining equations (5) and (7) we get

(Ucos a + Px)(±-TZ ) + y(±TZy) - ( + U sin a) = 0 on Z = +TZ,. (8)

It is assumed that the velocity potential and its derivatives can be expanded in Taylor series
about the wing mean plane. The Taylor series expansions are used in the boundary condition
given by equation (8) and after simplification, the following equation is obtained:

+TUcos aZ,x + TZxt( Ox(X, , 0 +) + [-,x(X, , 0 ±) Z,,OX(X, , 0 )] )

TtOy(X, Y 0) + (X, y, O ) ZOyz(Xx, y, 0 ±)] ) }

0oZ(X, y, 0±) - [O1 (x, y, 0± ) ± Zto(x, y, 0 )] - U sin a = O(T 2 ). (9)

* This approach complements the investigation of Weber [22] for the attached-flow (small a) case.
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Collecting terms of order 1 and , we get

TO: 0o(x, y, 0 ) = - U sin a, (10)

rl: l(x, , +) = Ucos aZ,x

+Zxox(x, y, 0) + Zy 0o(x, y, 0+)

TZtf.(X, y, o +). (11)

It follows from equation (10) that 0 is antisymmetric in z and 0z is symmetric in z in the
neighborhood of the wing surface and p0o represents the velocity potential for the flow past a
delta wing of infinitesimal thickness which we will refer to as the basic problem.

Now, consider equation (11). We can use the symmetry properties of 0 with respect to z to
separate the velocity potential 'P into lifting (ll) and nonlifting ( 1 2 ) parts,

:1 = 11 + 012 (12)

where the lifting potential Pll and the z-derivative of the nonlifting potential 12 are
antisymmetric in z in the neighborhood of the wing surface.

With the use of these symmetry properties and Laplace's equation, the first-order boundary
condition for the lifting problem to be satisfied on the wing mean surface can be written as

Al 1lz(x, Y, 0 -)= /ax(Zt 0ox(X, y,0 +)) + a/ay(Zt 0boy(x, y,0 +)). (13)

The first-order thickness problem is then

V 212 = 0, (14)

¢1 2z(X, Y, 0_) = + Ucos aZ,,, (15)

V 12 - 0 at infinite distances. (16)

Note here that the wake conditions are absent for the thickness problem due to the symmetric
nature of the velocity potential P12 about the xy-plane. The thickness problem can be solved by
distributing sources on the wing mean plane.

The complete first-order lifting problem is now given by

V 2 1 z = 0 (17)

where

01L = (OP+ T 11 (18)

and is subject to the conditions

(a) lLZ,(X, y, 0 )=-U sin a

+ {a/ax(Ztox0 (x, y, +))+ a/aY(Zt0 y(x, y, 0 +))};

(b) V'P1L' VFW= -(UX cos a + Uz sin a + 'P1 2) vFw (20)
on Fw(x, y, z) = 0;
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(c) there is no pressure jump across the wakes emanating from the leading edges and the
trailing edges of the wing;

(d) the Kutta condition which requires finite velocity at the wing edges should be satisfied;
(e) the disturbance velocity V4P1L must vanish far from the wing and the wake surfaces.
Since the function Fw(x, y, z) = 0 representing the leading-edge sheet and the trailing-edge

sheet is a nonlinear unknown function and has to be obtained as part of the solution (as in the
case of the basic problem), a close examination of equation (20) reveals that the first-order
problem and the basic problem cannot be solved separately and added together to obtain the
complete first-order lifting solution. The first-order lifting problem has to be solved along with
the basic problem.

It is important to note that the above formulation of the problem for the thick wing is
independent of the solution technique.

4. Delta wing with thickness at moderate angles of attack

4.1. The discrete vortex model

The wing mean plane is divided into a system of triangular and quadrilateral panels by
equally-spaced chordwise lines and equally-spaced spanwise lines (see Fig. 1). Each panel is
aerodynamically represented by bound vortex segments. For the panels adjacent to the leading
edge, the bound vortex segment starting from the quarter chord of the panel root chord goes up
to the mid-span length of the panel along the quarter-chord line and is directed along the
perpendicular to the leading edge. With reference to the Kutta condition, the velocity at the

segment

rtex segments

segments

edge vortex extension

finite vortex segment

Fig. 1. Discrete vortex system.
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leading edge is only infinite at the point at which the bound vortex crosses the edge and,
following the discussion given in [14], the vortex segment is arranged to emerge out of the wing
perpendicular to the leading edge. The vortex filament arrangement for a leading-edge panel is
shown in Fig. 1.

Free vortex segments representing the leading-edge separation start from an extension of the
bound vortex segment beyond the leading edge. The bound vortex is connected to a semi-in-
finite vortex segment through a number of vortex segments. The other end of the bound vortex
continues downstream in the wing mean plane parallel to the x-axis until it extends beyond the
trailing edge, where it is connected to a semi-infinite vortex line through a number of smaller
vortex segments (see Fig. 1).

The interior panels are modeled by horseshoe vortices whose legs extend beyond the trailing
edge and are connected to semi-infinite vortex lines far downstream again through a number of
short vortex segments. On any of these interior panels, the bound vortex segment lies along the
quarter-chord line of the panel. The control point (downwash point) is chosen to be at the
intersection of the mid-span line and the three-quarter chord line. The basic problem was
solved by the discrete vortex-lattice method in which the discrete vortex segments model the
lifting elements of the flow. The leading-edge vortex sheets are modeled again by discrete
vortex segments. The problem is solved iteratively by satisfying the wing and wake boundary
conditions on the wing and the wake surfaces at the selected control points.

4.2. Solution to the thickness problem

The solution to the thickness problem given by equations (14-16) is given in [24]. The
perturbation velocity potential ,12 is given by the following expression:

012(x y, z)= -(1/27T)JA(Ucos aZx,(x', y')/r) dx' dy' (24)

where r = [(x - X')2 + (y _y) 2 + z2 ]1/ 2.
Physically, equation (24) states that the flow due to thickness can be represented by a source

sheet over the wing mean surface (A) with the source strength per unit area being twice the
quantity Ucos aZx.

4.3. Solution to the lifting problem

The first-order lifting problem is essentially the same as the basic problem of flow around an
infinitesimally thin wing with leading-edge separation with the following differences:

(1) In the neighborhood of the leading edge, segments are modeled differently;
(2) The boundary conditions to be satisfied on the wing mean surface include the effect of the

thickness, (see equation (19));
(3) The effect of the sources is to be considered while calculating the downstream ends of the

finite vortex segments representing the leadiig-edge wake and the trailing-edge wake.

Other than these additional features, the solution technique for the first-order lifting problem is
essentially the same as that for the basic problem.

In the leading-edge region the vortex-segment extension is modeled in the following way:

(a) Leading-edge region for sharp-edged wings. For a wing with a sharp leading edge, since the
flow separates at the leading edge, the streamlines emerge tangential to the lower surface at
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(a)

(b)

Fig. 2. Leading-edge vortex-segment extension: (a) biconvex; (b) NACA 0012.

the leading edge (for positive a). Calculations were done by choosing the first leading edge
extension to be tangential to the bottom surface (see Fig. 2a).

(b) Leading-edge region for round-edged wings. In the case of wings with round leading edges
with small thickness parameter T, we do not know precisely the location of the separation
line. To within the accuracy of the modeling of the leading-edge separation by the discrete
vortex-segment method, we can take the separation line to be along the leading edge. To
simulate the flow leaving tangent to the leading edge, the leading-edge vortex-segment
extension was taken first perpendicular to the leading edge but in the wing mean plane and
then turned around 90 degrees in the direction normal to the wing mean surface (see Fig.
2b).

Since the flow model cannot accurately represent the regular velocity field in the neighbor-
hood of the leading edge, the sophistication of the above leading-edge extensions needs some
justification. For both sharp and round-edge wings, calculations were also made with exten-
sions in the wing mean plane. For the sharp-edged wings, both models yield reasonable force
coefficients and it is not clear which one yields the best overall comparisons with experiment.
For the round-edged wings, the model used in the paper gave substantially better agreement
with experimental results for the lift coefficient for the NACA 0012 section. It was the
judgment of the authors to use the leading-edge extension models which most closely modeled
the physics since no other criterion for the choice was apparent.

The details of the length of the leading-edge extensions, the initial shape of the vortex
segments modelling the wakes, and the orientation of the vortex segments are discussed at
length in [26].

Once the initial positions of the leading-edge vortex segments and the trailing-edge vortex
segments are given, the velocity at each control point on the wing mean surface can be
calculated using the Biot-Savart law. If Vm is the velocity induced at each control point due to
the vortex segments on the wing and in the wake, we have

N

Vm= Amnrn, m=l,...,N, (25)
n=l

where Amn are known vector quantities, N is the total number of wing panels, and r are the
unknown vortex strengths.

The boundary condition to be satisfied on the wing mean surface is given by equation (19):
N

-Usina+[a/ax{fzox(X, y, +)} +a/ay{Z oy(X, y, 0+)}] = Amn.kFr
n=l

(26)
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where k is a unit vector in the z-direction. For a wing of infinitesimal thickness the terms in the
bracket will be absent.

Equation (26) is a set of N linear algebraic simultaneous equations and can easily be solved
for the unknowns rF by standard algorithms.

Once the circulation distribution rn is known, the condition that each vortex segment in the
leading and trailing-edge wakes be aligned with the local velocity vector is used to calculate the
downstream ends of the finite vortex segments. In this way the kinematic and dynamic
boundary conditions on the vortex sheets are satisfied. The location of the downstream end of
each vortex segment is calculated from the equation

ri+l = ri + [ils/lV Il] (27)

where rj, Ij and Vj are, respectively, the position vector of the upstream end, and the length and
velocity at the control point (upstream end) of the jth vortex segment at the end of, say, the
nth iteration. These quantities are used to obtain the downstream end of the jth vortex
segment at the end of the nth iteration to go in as the input for the (n + 1)st iteration. While
calculating the velocities at the control points (upstream end points) of the vortex segments we
have to take into consideration the influences of the entire vortex system (bound and free) and
the velocities induced by the source distribution. For computational efficiency, the continuous
source distribution is discretized and distributed on a convenient number of constant source
panels. The velocity due to those source panels is calculated as in Woodward [25] and details
are given in Dodbele [26,27]. Once the position vectors of the ends of the free vortex segments
are determined the contribution of these wake vortex segments along with the contribution of
the bound vortex segments are used to obtain corrected influence coefficients to be used in
equation (25) again. Thus the iteration process alternates between the control points on the
wing and the control points on the vortex sheets. The process is said to have converged when
the maximum of the absolute difference between the x, y and z coordinates representing the
vortex-sheet shape from two successive iterations is less than a certain prescribed tolerance.
With the vortex strengths thus determined, the pressure distribution on each of the panels and
the overall aerodynamic coefficients are determined.

4.4. Results and discussion

Aerodynamic characteristics are obtained for a delta wing of AR = 1.0 having a 12% biconvex
airfoil section and a surface generated by radial straight lines from the tips. This wing has a
constant biconvex shape with a constant thickness/chord ratio across the span. Gordon and
Rom [17] have obtained aerodynamic characteristics for this biconvex section wing. They do
not consider the terms involving the thickness in the boundary condition to be satisfied on the
wing mean surface and also they have taken the first leading-edge extension in the wing mean
plane. In Fig. 3 lift coefficients obtained by the present method are indicated along with the
theoretical results obtained by Gordon and Rom [17] and the experimental results obtained by
Peckham [2]. From the figure we see that the lift coefficients obtained by the present method
for the biconvex section wing are in good agreement with the experimental results at higher
angles of attack.

Each of the wing halves was discretized by dividing the root chord and the semi-span into n
equal divisions each. The full wing then has 2n2 panels. Convergence studies were undertaken
which showed that 50 panels (n = 5) were sufficient to get the lift coefficient to within one
percent of its converged value. Also, eight iterations were needed for the lift-coefficient
convergence.
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Fig. 3. Lift coefficients for a biconvex section wing of AR = 1.0 and thickness ratio 12%.

Figure 3 also presents lift coefficients obtained for the biconvex wing and also the thin wing
with the same aspect ratio 1.0. This figure confirms the experimental observation that the effect
of thickness is to decrease the lift. Wing thickness affects the solution in two ways: (a) through
the boundary conditions to be satisfied on the wing mean surface, see equation (19), and (b) the
location of the vortex segments modeling the leading and the trailing-edge sheet shapes, see
equation (20). The contribution of the thickness terms in the boundary condition is quite small
compared to the dominant term - U sin a. This would appear to justify the choice of Gordon
and Rom [17] to neglect these thickness terms in their analysis.

The spanwise load distribution at a chordwise position of 0.75C is computed and presented
in Fig. 4 along with the experimental results. Though the theoretical pressure curve is
underpredicting it is showing the right trend. It is closer to the experimental data in the inboard
section. In the same figure the results obtained by Gordon and Rom [17] at the chordwise
station 0.73C are also plotted. It is noted that the vortex-lattice method is expected to calculate
more accurately overall forces than pressure distributions.

Next, aerodynamic coefficients for a NACA 0012 section wing with AR = 4/ V- were
computed and are presented in Fig. 5. For this wing experimental results are available [6].
Kulfan [18], Lamar [8,19] and Lan [12], independently, have obtained the lift coefficients for
this wing at a number of angles of attack. All the three investigators have used the suction
analogy to predict the vortex lift.

For round-leading-edge wings at lower angles of attack, attached flow or partial leading-edge
vortex flow separation occurs and hence the present computational procedure is not expected
to give very accurate results since full span leading edge separation is assumed. In Fig. 5, the
lift coefficients obtained agree very well with the experimental results at higher angles of attack.
The lift coefficients predicted are within about 2.5% of the experimental results. At large angles
of attack, since the present computational procedure does not incorporate the breakdown
feature of the vortex system, the method is not expected to give accurate results. Nevertheless,
the results obtained by the present method are in good agreement at a = 200. Figure 5 also
presents lift coefficients obtained by the theoretical method developed by Lamar [8]. Results
obtained by Lamar are a little higher than the experimental results at lower angles and the gap
tends to widen at higher angles of attack. Results obtained by Lan [12] (not shown in the
figure) were also a little higher than the experimental results but very close to the results

^^
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O Experimental results(ref. 2)
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Fig. 4. Spanwise load distribution for a biconvex section wing of AR =1.0, with thickness ratio 12% at a = 20.4 ° ,
x/Cref = .75.

obtained by Lamar. Lift coefficients obtained by Kulfan [18] (not shown in the figure) seem to
be very close to the experimental results [6]. When the vortex breakdown effect was included in
Lan's [12] method the lift coefficients seemed to agree very well with the experimental results.

In Fig. 5 lift coefficients obtained by the present theory for the NACA 0012 section delta
wing and a very thin delta wing, both with AR = 4/ V- are compared. Here, again, it is
confirmed that the effect of thickness is to decrease the lift.

Until now we have been discussing the effect of thickness on lift for delta wings with
full-span leading-edge vortex separation at moderate angles of attack. For delta wings with
sharp leading edges flow separates all along the leading edge at all angles of attack. But in the
case of wings with round leading edges there could be part-span separation at certain low
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Fig. 5. Lift coefficients for a NACA 0012 section wing of AR = 4/li.
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Fig. 6. Lift coefficients for a NACA 0012 section delta wing of AR = 4/i/i at small angles of attack.

angles of attack and at very low angles of attack the flow can be considered to be attached in
the leading-edge region but we still have a nonlinear trailing wake. A perturbation theory is
developed here to treat such an attached-flow situation in which both angle of attack and the
thickness parameter are small. The mathematical formulation of this problem is given in
Appendix A.

Lift coefficients are obtained for the NACA 0012 section wing of AR = 4/ Fv at low angles
of attack with the assumption of attached flow at the leading edge and a nonlinear wake issuing
from the trailing edge. They are presented in Fig. 6. In the figure, the lift coefficient obtained
by the present method and by experiments [6] at 50, 100, and 15 ° of angles of attack are
shown. The branch of the lift curve obtained with the assumption of attached flow near the
leading edge seems to have a higher gradient than the main lift curve corresponding to higher
angles of attack. The lift coefficient obtained at 5 with the assumption of attached flow near
the leading edge seems to be in fairly good agreement with the experimental results, whereas
the lift coefficient obtained with the assumption of the full-span leading-edge vortex flow falls
below the experimental results at 5° . This shows that for a round-edged delta wing at low
angles of attack (until about 5) the flow is such that we can assume an attached flow at the
leading edge and get good estimates of the lift coefficients. At higher angles of attack (above
100) we have full-span leading-edge separation and the present model predicts the lift
coefficients very well. In the intermediate range (i.e., 5-10° ) it would appear that there is
part-span leading-edge separation which is not predicted by the present model or by the
attached-flow theory. To get a good estimate in this region part-span separation has to be built
into the numerical model.

4.5. Conclusions

A perturbation theory is developed to treat the effects of thickness on the lift of low-aspect-ratio
delta wings in incompressible flow at moderate angles of attack. The problem has been split
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into basic and first-order components and the solution procedures are described. The effects of
the nonlinear nature of the leading-edge vortex sheet and the trailing-edge sheet are pointed
out. It is shown that the first-order lifting problem has to be solved together with the basic
problem.

The first-order problem of flow over a delta wing with thickness is solved by the nonlinear
discrete-vortex-segment method. The lifting elements of the flow are modeled by the vortex
segments and the thickness elements are modeled by constant-strength source panels. Results
are obtained for a sharp biconvex wing and a NACA 0012 section at higher angles of attack.
The important observation that the effect of thickness is to decrease the lift is made.

A theory based on perturbation analysis is developed to obtain the aerodynamic characteris-
tics of delta wings with round leading edges at small angles of attack. It is shown that at very
low angles of attack it is necessary to assume attached flow near the leading edges of these
round-leading-edge wings to get good estimates of the lift coefficients. The range of angle of
attack at which part-span separation may occur is also indicated.
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Appendix A

Mathematical formulation for wings with round leading edges at small angles of attack

Consider again the steady incompressible inviscid flow of a uniform stream of speed U at angle
of attack a past a delta wing with thickness. The thickness parameter as well as the angle a
are assumed to be very small and we take a = O(T). The problem is treated as before except
now the flow is assumed to be attached along the leading edge and only the trailing-edge wake
needs to be modeled. An expansion in both a and is made and the approach parallels the
work of Weber [22].

An outline of the mathematical formulation follows. We will highlight the aspects which
differ from the formulation developed for moderate angles of attack. Details can be found in
Dodbele [26].

The velocity potential is written as

Ua(2X
= Ux- 2 + Uaz + (A1)

where is the disturbance velocity potential. For small a and T, , is expanded as

4 = Tlr + a(,l a + aT 4 ar + a
2

2a + T22T - O(a
3

, 
'3 , ar

2
, Ta

2
). (A2)

The first and second-order wing boundary conditions (corresponding to equations (14) and
(15)) are:
first order:

(A3)
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second order:

aT[I Zt.xl1x(X, ±) Ztylay(X, Y, +) Z 1 , y, +)]

+t 2 [ ZtXITx(XI y, O -) ZtYlTy(X y ,O±+) + ZtlT(x, y 0)]

+arT(Pa,(x, y, 0 ±) + a2 b2 z(X, y, O ) + 2 2,z(X, y, 0 ) = 0. (A4)

The wing boundary conditions for the first-order lifting and thickness problems, respec-
tively, are obtained from equation (A3) as

laz(X, y, 0+)= -U (A5)

and

iz(x, y, ) = UZx. (A6)

The thickness and lifting problems are independent at first order. Also, l, is seen to
represent the zero-thickness lifting problem for a delta wing with a nonlinear trailing wake. It is
solved with the discrete vortex-lattice method. The first-order thickness problem is represented
by a source sheet with source strength per unit area 2UZ,x.

The wing boundary conditions for the three second-order components are obtained from
equation (A4) as

2 .Z(x, y, O+) =0, (A7)

a(X y, 0) = Ztx,,x(x, y,O +) Zt y(x, y, O +)

+ tolzz (, y, 0 ), (A8)

¢2Z(X y, o 0 ) = a [ Z1TX(X Yx aY [t1Y( , y, +)] (A9)

where Laplace's equation was used to obtain equation (A9).
The lifting potential 02a satisfies a homogeneous problem and is zero. The potential O., is a

lifting potential and 2,, the second-order thickness potential, satisfies a nonlifting problem.
The contribution of the second-order thickness potential to the wing lift is negligible compared
to the contribution of the first-order thickness potential and so its effect is neglected in the
calculation.

The complete second-order lifting potential is

'P2L = abla + aTOpT (A10)

and the second-order lifting problem must be solved along with the first-order lifting problem
due to the presence of the nonlinear trailing-edge wake. Again, the discrete vortex-lattice
method is used.
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